If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-12x^2+6x+30=0
a = -12; b = 6; c = +30;
Δ = b2-4ac
Δ = 62-4·(-12)·30
Δ = 1476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1476}=\sqrt{36*41}=\sqrt{36}*\sqrt{41}=6\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{41}}{2*-12}=\frac{-6-6\sqrt{41}}{-24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{41}}{2*-12}=\frac{-6+6\sqrt{41}}{-24} $
| 4x−5=31 | | 52=18*3x12 | | 18=3x12 | | 2(2x+5x)=-4(5x-5)+5x | | 2m-2=6m+5 | | 5x(3x+12)=0 | | 16−2t=23t+9 | | 1/3x=1/ | | 18=3w+6w | | p/3.6=9 | | |x^2-2x|=x | | 3q^2+2q-90=0 | | -2a-7=13 | | 5y/3+y/15=26/5 | | c+1/2=3c-1/2 | | x^2-169x+15=0 | | 10z-5-4z=6z-5 | | 12(3x+3)-5(2x-6)=6x-14 | | 10-7y=-8 | | 2(4x+5)=-4(5x-3)-3x | | x^2-169x+30=0 | | 2x-4/9=2 | | .80y-3y=-33 | | -4(x-2)+3x=15 | | 16x=21 | | 18j-18j+2j-2j+2j=12 | | h=1.4+{1.25}{20} | | 11x-15=9x+5 | | 18j−18j+2j−2j+2j=12 | | 19a+a-13a=14 | | 7(3x+1)=7+7x | | (-6j)-(-15j)-2j+2j=(-9) |